Diversity of Protein and mRNA Forms of Mammalian Methionine Sulfoxide Reductase B1 Due to Intronization and Protein Processing

نویسندگان

  • Xinwen Liang
  • Dmitri E. Fomenko
  • Deame Hua
  • Alaattin Kaya
  • Vadim N. Gladyshev
چکیده

BACKGROUND Methionine sulfoxide reductases (Msrs) are repair enzymes that protect proteins from oxidative stress by catalyzing stereospecific reduction of oxidized methionine residues. MsrB1 is a selenocysteine-containing cytosolic/nuclear Msr with high expression in liver and kidney. PRINCIPAL FINDINGS Here, we identified differences in MsrB1 gene structure among mammals. Human MsrB1 gene consists of four, whereas the corresponding mouse gene of five exons, due to occurrence of an additional intron that flanks the stop signal and covers a large part of the 3'-UTR. This intron evolved in a subset of rodents through intronization of exonic sequences, whereas the human gene structure represents the ancestral form. In mice, both splice forms were detected in liver, kidney, brain and heart with the five-exon form being the major form. We found that both mRNA forms were translated and supported efficient selenocysteine insertion into MsrB1. In addition, MsrB1 occurs in two protein forms that migrate as 14 and 5 kDa proteins. We found that each mRNA splice form generated both protein forms. The abundance of the 5 kDa form was not influenced by protease inhibitors, replacement of selenocysteine in the active site or mutation of amino acids in the cleavage site. However, mutation of cysteines that coordinate a structural zinc decreased the levels of 5 and 14 kDa forms, suggesting importance of protein structure for biosynthesis and/stability of these forms. CONCLUSIONS This study characterized unexpected diversity of protein and mRNA forms of mammalian selenoprotein MsrB1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NMR assignments of 1H, 13C and 15N spectra of methionine sulfoxide reductase B1 from Mus musculus.

Isotopically labeled, 15N and 15N/13C forms of recombinant methionine-r-sulfoxide reductase 1 (MsrB1, SelR) from Mus musculus were produced, in which catalytic selenocysteine was replaced with cysteine. We report here the 1H, 13C and 15N NMR assignment of the reduced form of this mammalian protein.

متن کامل

تولید پپتید ضد میکروبی درماسپتین B1 نوترکیب در سیستم کشت ریشه‌های موئین توتون و زیست‌سنجی اثرات ضد باکتریایی

Background: Root hair culture is a valuable system to produce recombinant proteins in planta. Antimicrobial peptides (AMPs) are  vital parts of the innate immune response found in almost all forms of life. Precise target activity and limited toxicity towards mammalian cells make them suitable candidate molecules to combat evolving drug-resistant microorganisms. The aim of the present study...

متن کامل

Methionine sulfoxide reduction in mammals: characterization of methionine-R-sulfoxide reductases.

Methionine residues in proteins are susceptible to oxidation by reactive oxygen species, but can be repaired via reduction of the resulting methionine sulfoxides by methionine-S-sulfoxide reductase (MsrA) and methionine-R-sulfoxide reductase (MsrB). However, the identity of all methionine sulfoxide reductases involved, their cellular locations and relative contributions to the overall pathway a...

متن کامل

Methionine sulfoxide reductases: selenoprotein forms and roles in antioxidant protein repair in mammals.

Msrs (methionine sulfoxide reductases), MsrA and MsrB, are repair enzymes that reduce methionine sulfoxide residues in oxidatively damaged proteins to methionine residues in a stereospecific manner. These enzymes protect cells from oxidative stress and have been implicated in delaying the aging process and progression of neurodegenerative diseases. In recent years, significant efforts have been...

متن کامل

Erratum to “Decreased Phosphorylation and Increased Methionine Oxidation of α-Synuclein in the Methionine Sulfoxide Reductase A Knockout Mouse”

Previously, we have showed that overexpression of methionine-oxidized α-synuclein in methionine sulfoxide reductase A (MsrA) null mutant yeast cells inhibits α-synuclein phosphorylation and increases protein fibrillation. The current studies show that ablation of mouse MsrA gene caused enhanced methionine oxidation of α-synuclein while reducing its own phophorylation levels, especially in the h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010